' 6, DM AD = AO[5..0]
! CONTROL UNIT % -
i * DATAPATH
! . - AQO: 16-bits wide.
' : A "o nly the 6 LSB d
' g pc JS—> IR[8..6]&IR[2..0] Only the s are use
' E PC oOFFsET Register
- l ; o
' sclr PC S AN File .
| n=e| 2% registers MW
start 1PC l
i Y DM AD
step IM WE AD — WE
' WE . AO—t| D
L in ! L5
~ —>| INST_LOAD 16 Instruction w®z.0 | DATAPATH Data
L_ex i | CONTROL [msfd|DI Memory po[====| DI Memory
! B| DM DI
D ex16,; = 4 -
- # [aq
we ex ' DO FS + Do
—_—
| 16]/ Z < \4 DM _DO
! V < ALU B
| H61 IRJ, N o]« L6,
: isk n C < .
: PC . <— MD e R
. stop ID Instruction !
: Decoder < N > r 3 : Z
' RW DR SA SB 1 |
|
1
|
1
COMPONENTS:

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710: Computer Hardware Design

Winter 2021

OBJECTIVES

Laboratory 6

v Design a 16-bit microprocessor with Single-Cycle Hardwired Control.
v' Implement an Instruction Set Architecture (ISA).

VHDL CODING

(Due date: 005: April 14, 006: April 15, 007/008: April 16t)

v Refer to the Tutorial: VHDL for FPGAs for parametric code for: Register, adder/subtractor.

ACTIVITIES

FIRST ACTIVITY: 16-BIT MICROPROCESSOR DESIGN AND SIMULATION (70/100)
= Implement the Simple Computer (see Notes — Unit 6): uP with 6-bit IM/DM address, 16-bit instructions, and 16-bit data.

= DM, IM: 64 words, 16 bits per word. Use the files RAM_emul.vhd, my_rege.vhd. (set the proper parameters).
= Datapath: (note that CI[2..0] =IR[2..0], CI[15..3]="00...0")
v Register File: 8 registers (RO — R7) are included. See Notes — Unit 6 for an example with 4 registers.
v ALU: Use the files: alu.vhd, alu_arith.vhd, alu_logic.vhd, super_addsub.vhd, fulladd.vhd.
= PC: Note that OFFSET is a 6-bit signed number. The adder uses 7 bits, from which we only retrieve the 6 LBSs.
= Instruction Decoder (1D): This is a large combinational circuit. The outputs depend directly on the inputs.
v" The outputs are generated based on the instructions on 1R (Instruction Register).

v Instruction Set: For the list of instructions, refer to Notes — Unit 6. The Instruction Set does not include instructions that
read the V and C bits. Thus, the 1D does not consider these two bits.

v stop_ID: If stop_ID=1, it forces the signals rRw, Mw, 0S, JS to be ‘0.
v' isbranch: If the instruction in IR is a branch or jump instruction, this signal is set to ‘1’.
= Instruction Load Control: This block is required in order to write instructions on the 1M, and then to trigger program
execution. Use the file instload_ctrl.vhd (use parameters H=6, N=16) This circuit is a FSM that works as follows:
v To store instructions on 1M from an external port: assert L_ex and then use the inputs D_ex and we_ex.
v To store instructions on 1M using pre-stored hardwired data: assert L_in.
v Once instructions are written on the 1M, program execution is started by asserting start for a clock cycle. The step signal
controls whether to enable program execution (step=1) or disable it (step=0).

1

Instructor: Daniel Llamocca

TAs: Andrew DeJonge, Nathan Kelley

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-4710: Computer Hardware Design Winter 2021
! DATAPATH
: ﬂ
1
PROGRAM COUNTER (PC) | 5
OFFSET mah o 0000001 yRW i o
4 7/ ! R« ist
OFFSET(5)80FFSETW ¥ : . e
08 1 0 i DRA . 3 sB
0&PC : 2M registers 7
7 7 !
1 1
! BUS A BUS B CI
| 16f ;
6, ! 1
o : : N
¥ ' L3
! RO ” = DO
JS 1 0 !
L, Y
v \ AL — Fs
E_PC E | N \
sclr PC sclr ' C
> : ol DT
| \[
1
: s
1
VPc
PROCEDURE

= Create a new Vivado project. Select the corresponding Artix-7 FPGA (e.g.: XC7A50T-1CSG324 for the Nexys A7-50T).

= Write the VHDL code for the given circuit. Synthesize your circuit to clear syntax errors.
v" Note that the code for ALU, 1M, DM, and Instruction Load Control blocks is already provided. You need to instantiate
these components and set up the corresponding generic parameters.

= Write the VHDL testbench to simulate your circuit.
v" Your testbench must test the following Assembly program (use a 50 MHz input clock with 50% duty cycle).
= Assembly program (pre-stored in instload_ctrl.vhd). It stores numbers from 43 downto 29 in Data Memory (DM) on

addresses 0 to 14. The number to be stored appears in R6. The program completes when Brz Rr4, -7 makes pc=0.

Address | VHDL code snippet Assembly Program address
000000 | cD(0) <= “1001100010---101” | start: LDI R2,5 R2 « 5 000000
000001 | CD(1) <= “1001100110---111" LDI R6,7 R6 <« 7 88882%
000010 | cD(2) <= “1000010110110111” ADI R6,R6, 7 | R6 « 14 000011
000011 | €D(3) <= “0000000100110---" MOVA R4,R6 R4 « 14 000100
000100 | cD(4) <= “0000010110100110” ADD R6,R4,R6 | R6 « 28 000101
000101 | CD(5) <= “0000001110110---" loop: 1INC R6,R6 R6 <« R6+1 000110
000110 | CD(6) <= “0100000---100110" ST R4,R6 M[R4] « R6 000111
000111 | CD(7) <= “1100000111100001” BRZ R4, -7 If R4=0 = BC « pc-7=0 001000
001000 | cD(8) <= “0000110100100---" DEC R4,R4 R4 <« RA4-1 88182%
001001 CD(9) <= “1110000---010---=-" JMP R2 PC « R2=5 001011
001010 (NOP operation) 001100

001101

v" Set L_in=1 for a clock cycle. Then wait 70 cycles for the program to be written on the Instruction Memory.

= Since they are not being used, set the inputs L_ex, we_ex, and D_ex to 0's.
V' Set start=1 for a clock cycle. Make sure that step = 1 during the execution of the program (for as many cycles as needed)

1

) -

resetn ! |
1

clock

L

_in

70 cycles

001110

start

step

PC 0

Sak---

N 4

Instructor: Daniel Llamocca
TAs: Andrew DeJonge, Nathan Kelley

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710: Computer Hardware Design Winter 2021

= Perform Behavioral Simulation of your design. Demonstrate this to the TA.
Add internal signals to the waveform view. In particular: PC, IR, R0-R7, 1D outputs, DM registers.
To verify the correct processing of instructions, look at pc and IRrR. Then, observe the R0O-R7 values as well as
other signals (e.g.: ID outputs). To verify that the correct data was stored on DM (Data Memory), you can add
the Individual Registers (from 0 to 14) of DM to the waveform view.

SECOND ACTIVITY: TESTING (30/100)
= In order to properly test this microprocessor, we need to:

v
v

v

Set the inputs L_ex, we_ex, and D_ex to 0's.

Avoid mechanical bounding on the push buttons for L_in, start, and step. Connect the debouncer circuit

(mydebouncer.vhd, my genpulse sclr.vhd) on these inputs.

Ensure that each pressing of step is converted to a one-cycle pulse. Connect a pulse detector (mypulse det.vhd) to the

debounced step signal. This way one instruction is executed each time step is pressed.

= When step=0, the instload control block issues stop_ID=1. This causes the program execution to pause.

Reduce the frequency of operation to 50 MHz. Add a MMCM block with a 50 MHz output clock (MvcM wrapper.vhd, use

o_0=2 for clockout0 = 50MHz). Then use the 50 MHz clock as the system clock.

= Due to the large combinational delay, the design cannot meet the timing constraint of the input clock (100 MHz). As
a result, we use a Digital Clock Manager (MMCM) that generates a 50 MHz clock (this timing constraint can be met).

= Create a top file with the modifications (as per the figure). Note that you do not need to simulate this circuit.

1 1
L_in—r— Debouncer L in :
[1
! | 16
start —i—— Debouncer [——————>|start . DM _DO
| Pul uP |
! ulse !
step ! _>Debouncer L Detector []5FeP i
| |
1
! clkout 50 MHz clock > L ex we ex D ex :
clock ——p — - — '
! MMCM_wrapper T T 16 !
resetn — 0 0 !
= I/O Assignment: Create the XDC file associated with your board.
v Suggestion (Nexys A7-50T/A7-100T, Nexys 4/DDR):
Board pin names | CLK100MHZ = CPU_RESET BTNU BTNL BTNC | LED15-LEDO
Signal names in code ’ clock resetn L in start step | DM_DO
v Note: synchronous circuits always require a clock and reset signal.

= Reset signal: As a convention in this class, we use active-low reset (resetn). Thus, we tie resetn to the active-low
push button cPU_RESET of the Nexys A7-50T/A7-100T, Nexys 4/DDR board.

= Clock signal: Like other signals in the XDC file, uncomment the lines associated with the clock signal and replace
the signal label with the name used in your code. In addition, there is parameter -period that is set by default to
10.00. This is the period (in ns) that your circuit should support.

* Nexys A7-50T: In these lines, replace the label ctx100mMHz with the signal name you use in your code (clock):
set property -dict { PACKAGE_ PIN E3 TOSTANDARD LVCMOS33 } [get ports { CLK100MHZ }];
create_clock -add -name sys_clk pin -period 10.00 -waveform {0 5} [get ports {CLK100MHZ}];

= Generate and download the bitstream on the FPGA and test the Assembly Program. Demonstrate this to your TA.

v

To test the Assembly Program, follow these steps:
@ Push and release L_in.
= Push and release start.
s Push and release step. For every stroke, an instruction is executed. Do this repeatedly until the program completes
its task (this happens when the instruction Brz Rr4, -7 branches back to instruction at 000000).
- The first time you execute sT r4,Ré6 (i.e., after 7 strokes of step) you should see 0x001Dp on the output pM po.
The second time you execute sT Rr4,R6, you should see 0x001E on the output pM_po.

The last time you execute sT r4, r6, you should see 0x0028 on the output pM_po.
* Note: after st r4,R6 (Or BRZ R4,-7) is executed, the re value appears on pM Dpo. This is because these two
instructions cause sa=4, which results in a0=rR4[5..0]. R4[5..0]: oM address where the value of rs is stored.

3 Instructor: Daniel Llamocca
TAs: Andrew DeJonge, Nathan Kelley

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-4710: Computer Hardware Design Winter 2021

Submit (as a .zip file) all the generated files: VHDL design files, VHDL testbench, and XDC file to Moodle (an assignment will
be created). DO NOT submit the whole Vivado Project.
v Your .zip file should only include one folder where only the .vhd and .xdc files are located. Do not include subdirectories.

+ You can work in teams of up to two (2) students. Only one Moodle submission per team.

TA signature: Date:

Instructor: Daniel Llamocca
TAs: Andrew DeJonge, Nathan Kelley

	Objectives
	VHDL Coding

	Activities
	First Activity: 16-bit Microprocessor Design and Simulation (70/100)
	Second Activity: Testing (30/100)

